DRYING LUMBER WITH A SOLAR KILN

Brian Bond

Virginia Cooperative Extension

Virginia Tech
2018

Why do we dry wood?

To gain value added

4/4 Thickness	Green (\$/MBF)	Dry (\$/MBF)
Red Oak FAS	965	1395
Red Oak 1 Com	685	1020
Hard Maple FAS	1375	1585
Hard Maple 1 Com	1060	1140
Yellow-poplar FAS	840	1105
Yellow-poplar 1 Com	455	695

September 21, 2018 Appalachian

Why do we dry wood?

- To gain entrance to market
 - Who uses green wood?

Wood Moisture Effects

- Strength
- Treating
- Durability
- Machining
- Gluing
- Assembly
- Finishing
- Use
- Weight
- Dimensional stability

What is the goal of the drying process?

- Usually:
 - To drive water out of wood at an acceptable rate of speed with the maximum obtainable quality
 - Reach a target moisture content with minimal degrade and cost

Moisture Content

The weight of water in wood relative to the dry weight of the wood, expressed as a percentage

$$\%MC = \frac{\text{Wet Weight - Oven Dry Weight}}{\text{Oven Dry Weight}} X100$$

$$\%MC = \left(\frac{\text{Wet Weight}}{\text{Oven Dry Weight}} - 1\right) X100$$

Moisture Content (oven dry basis)

%MC = $\frac{0.90 \text{ kg} - 0.60 \text{ kg}}{0.60 \text{ kg}} X100 = 50\% MC$

Moisture Contents

- Green fresh sawn lumber
- Air-dry- dried to ambient conditions
- Kiln-dry- should be specified 6-12%
 - Lumber for Indoor Conditions
- Oven-dry- all water removed 0%mc

How do we dry wood?

- The two most common methods of drying lumber are:
 - Air drying
 - Air drying and then kiln drying
 - Kiln drying

How do we dry wood?

- What are the limitations?:
 - Air drying
 - Air drying and then kiln drying
 - Kiln drying

How much control over conditions?

What do we need to dry wood? How does a kiln work? A kiln controls three factors Temperature Humidity Air flow BAFFLE COLLECTOR LUMBER LUMBER

										_					_			_		
	- 14	er	n	76	r	at	ш	re	2	R	н	-	ar	١d	F	: /	Λ			
			' ' '		- " '	u	. Ч		- 1		٠.,	,	41	ı			' `			
Table	3–4. Mc	nisture	contr	ent of	wood	l in er	milibi	rium v	with s	tated	temn	eratur	e and	relat	ive hı	ımidit	hv			
	perature) iotar c	COIII		11000						variou					arrii Gir	• •			_
																				_
(°C	(°F))	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	85%	90%	95
-1.1	(30)	1.4	2.6	3.7	4.6	5.5	6.3	7.1	7.9	8.7	9.5	10.4	11.3	12.4	13.5	14.9	16.5	18.5	21.0	24
4.4	(40)	1.4	2.6	3.7	4.6	5.5	6.3	7.1	7.9	8.7	9.5	10.4	11.3	12.3	13.5	14.9	16.5	18.5	21.0	24
10.0	(50)	1.4	2.6	3.6	4.6	5.5	6.3	7.1	7.9	8.7	9.5	10.3	11.2	12.3	13.4	14.8	16.4	18.4	20.9	24
15.6	(60)	1.3	2.5	3.6	4.6	5.4	6.2	7.0	7.8	8.6	9.4	10.2	11.1	12.1	13.3	14.6	16.2	18.2	20.7	24
21.1	(70)	1.3	2.5	3.5	4.5	5.4	6.2	6.9	7.7	8.5	9.2	10.1	11.0	12.0	13.1	14.4	16.0	17.9	20.5	23
26.7	(80)	1.3	2.4	3.5	4.4	5.3	6.1	6.8	7.6	8.3	9.1	9.9	10.8	11.7	12.9	14.2	15.7	17.7	20.2	23
32.2	(90)	1.2	2.3	3.4	4.3	5.1	5.9	6.7	7.4	8.1	8.9	9.7	10.5	11.5	12.6	13.9	15.4	17.3	19.8	23
37.8	(100)	1.2	2.3	3.3	4.2	5.0	5.8	6.5	7.2	7.9	8.7	9.5	10.3	11.2	12.3	13.6	15.1	17.0	19.5	22
43.3	(110)	1.1	2.2	3.2	4.0	4.9	5.6	6.3	7.0	7.7	8.4	9.2	10.0	11.0	12.0	13.2	14.7	16.6	19.1	22
48.9	(120)	1.1	2.1	3.0	3.9	4.7	5.4	6.1	6.8	7.5	8.2	8.9	9.7	10.6	11.7	12.9	14.4	16.2	18.6	22
54.4	(130)	1.0	2.0	2.9	3.7	4.5	5.2	5.9	6.6	7.2	7.9	8.7	9.4	10.3	11.3	12.5	14.0	15.8	18.2	21
60.0	(140)	0.9	1.9	2.8	3.6	4.3	5.0	5.7	6.3	7.0	7.7	8.4	9.1	10.0	11.0	12.1	13.6	15.3	17.7	21
65.6	(150)	0.9	1.8	2.6	3.4	4.1	4.8	5.5	6.1	6.7	7.4	8.1	8.8	9.7	10.6	11.8	13.1	14.9	17.2	20
71.1	(160)	8.0	1.6	2.4	3.2	3.9	4.6	5.2	5.8	6.4	7.1	7.8	8.5	9.3	10.3	11.4	12.7	14.4	16.7	19
76.7	(170)	0.7	1.5	2.3	3.0	3.7	4.3	4.9	5.6	6.2	6.8	7.4	8.2	9.0	9.9	11.0	12.3	14.0	16.2	19
82.2	(180)	0.7	1.4	2.1	2.8	3.5	4.1	4.7	5.3	5.9	6.5	7.1	7.8	8.6	9.5	10.5	11.8	13.5	15.7	18
87.8	(190)	0.6	1.3	1.9	2.6	3.2	3.8	4.4	5.0	5.5	6.1	6.8	7.5	8.2	9.1	10.1	11.4	13.0	15.1	18
93.3	(200)	0.5	1.1	1.7	2.4	3.0	3.5	4.1	4.6	5.2	5.8	6.4	7.1	7.8	8.7	9.7	10.9	125	14.6	17
98.9	(210)	0.5	1.0	1.6	2.1	2.7	3.2	3.8	4.3	4.9	5.4	6.0	6.7	7.4	8.3	9.2	10.4	120	14.0	16
104.4	(220)	0.4	0.9	1.4	1.9	2.4	2.9	3.4	3.9	4.5	5.0	5.6	6.3	7.0	7.8	8.8	9.9			
110.0	(230)	0.3	8.0	1.2	1.6	2.1	2.6	3.1	3.6	4.2	4.7	5.3	6.0	6.7						
115.6	(240)	0.3	0.6	0.9	1.3	1.7	2.1	2.6	3.1	3.5	4.1	4.6								
121.1	(250)	0.2	0.4	0.7	1.0	1.3	1.7	2.1	2.5	29										
126.7	(260)	0.2	0.3	0.5	0.7	0.9	1.1	1.4												

Collector Design –The Glazing

Long or infrared waves trapped or reflected back

How does a solar kiln work?

Humidity

- What influences the relative humidity in the kiln?
- · Does it change during the drying process?

How does a solar kiln work?

Airflow

- · What influences the airflow in the kiln?
- · Does it change during the drying process?

VT Solar Kiln: Basic Design

- Semi-Greenhouse
 - Usually only roof clear but maybe south wall
 - Glazing any type
 - Good thermal insulation
 - Better control of drying

Where to start?

 Lets start with looking at the solar collector and the amount of heat needed to dry lumber

General Assumptions

- 1 square foot of collector can produce about 1000 BTU's per day (based on a 12 month average)
- It takes about 1000 BTU's to evaporate about one pound of water from wood (a reasonable design average)

General Assumptions: How much water to remove?

Lumber in kiln is:

- 52" wide/12" = 4.33 ft
- 1.125/12 x 15 layers = 1.41 ft
- 12' length

12 x 4.33 x 1.41= 73.26 cubic feet of wood

How Much Water in Wood A Quick Estimate . . .

Weight of water = Volume of wood in cubic feet x Specific gravity of wood x 62.4 x (Green MC – Final MC in decimal)

73.26 x 0.56 x 62.4 x (.77 – .07) = 1792 pounds of water to remove from 800 bd.ft. of red oak from 77 to 7 % MC

How Much Water in Wood A Quick Estimate . . .

 How many btu's per day to loose 2% MC in red oak?

Weight of water = Volume of wood in cubic feet x Specific gravity of wood x 62.4 x (Green MC – Final MC in decimal)

- $73.26 \times 0.56 \times 62.4 \times (.77 .75) =$
 - 65.5 pounds of water for a 2% MC loss in 4/4 red oak
 - 65.5 x 1,000 btu/lb.- 65,500 btu

The Collector Size?

- Collector:
 - 96 x 144 -inches
 - -8 ft x 12 ft = 96 sq feet
- 96 cu ft x 1000 btu/cu ft/day = 96,000/day @ 100% efficiency
 - Assume 50% efficiency......
 - 96,000 / 0.50 = 48,000 btu.....
 - Assume 60% efficiency......
 - 96,000 / 0.6 = 57,600 btu.....

Confused?

- Our design is based on drying 4/4 red oak, so if you maintain approximately 10bd ft to 1 sq ft of collector, you will be just fine!
- We designed to kiln so that if it is properly loaded (10 bd ft : 1 sq ft collector) the kiln will not check lumber

VT Solar Kiln Design

- Based on 25 years of research and development on the solar drying of lumber in USA and foreign countries
- Designed with two major objectives:
 - 1) be relatively inexpensive to construct
 - 2) be simple to operate
 - Collector size limits temperature

Glazing

- Tuftex 144-in Clear Corrugated Polycarbonate Roof Panel
 - Square wave profile
 - Temperatures 270°F to -40°F
 - 100% UV protected
 - The clear panel lets 90 percent of light shine through

Collector Design -

Glazing

Construction

- Rear Vents
- Loading and Sample Door

Construction

Fans

- •Three inexpensive plastic fans
 - •Watch heat when unloaded!

Fans

- About 100 to 150 fpm through the load
- Length x No. layers x Sticker thickness x Air-Velocity
- 12 ft x 20 layers x 3/48 sticker thickness x 100 fpm air-velocity equals 1500 cpm

Completely Solar?

- •Can the kiln be designed to be completely solar?
 - Option 1
 - Solar panel to charge batteries to run fans
 - Option 2
 - Solar panel to run fans

Self-Contained Solar

- Option 1. AC fan using solar power to operate fan.
 - Source:
 - Creative Energy Technologies Inc 2872 State Rt 10 Summit, NY 12175 USA

www.cetsolar.com/

Parts required	Cost	
16" ac fan		\$ 20.00
20 Watt Solar panel Part #SPS20)	\$202.00
Mounting kit for solar panel		\$ 79.00
Battery 250 watt hour deep cycle	Part # UB-8D	\$360.00
Charge controller for battery	Part #SS-6L	\$ 65.58
400 Watt DC to AC power Inverter	Part # Veco24	\$ 49.90
	To	tal \$776.57/per fan

Option 2 – Home center attic fan

- 500 cfm each fan
- 179 each fan
- \$537 for three

Solar Kiln Info www.Solarkilninfo.com

Original VT Kiln

Dianne Griffin
Solar Kiln Class 2014

Robin Jones (Solar Kiln Class 2002)

Where to Start?

• The kiln is built and you have some wood sawn.....you are ready(?)

Stacking Lumber

Where do you start?

• Get the lumber on sticks

Stacking

- Get the lumber on sticks
 - Promote uniform air circulation
 - heat
 - humidity
 - Reduce or eliminate warp

Stickers

Thickness

- ¾" to 7/8"
- speed and uniformity
- Typical
 - Thinner stickers increase kiln capacity
 - Increase air velocity
 - Make air-flow more uniform

Width

- 1-1/4" to 1 1/2 inch
- Too wide stain
- Too narrow improper placement
- Strength is a function of width and thickness

Stickers

- Spacing
 - 16" to 24"
 - Based on tendency to warp
 - Flush or as close as possible to the ends
 - Reduces warp and minimizes splitting
 - 12" on end for multiple length packs

Stickers

- Quality
 - Straight grained
 - Hardwoods
 - Density
- Moisture Content
 - 9-12% MC
 - Keep them dry
 - (out of the rain)

Dry Green or Air-dry First?

- What is best?
- Why?

Air-drying Lumber

- Level Pile Foundation
- Uniform weight distribution
- Pile cover

Monitoring the Drying Process

- How much control do we need?
 - What can we really control?
- How much information is necessary?

What is a kiln sample?

- A section 30" or more in length
- · It is cut from a selected board
- Must dry at the same rate as the lumber
 - End coating
- Placed in the kiln charge so that it can be removed for examination, weighing and testing.

Moisture Sections

Estimated Oven Dry Sample Wt = $\frac{Original\ wt\ of\ sample}{100+MC\ of\ smaple\ in\ \%}$ x 100

Est. Oven Dry Wt. = $\frac{5.64 \, lbs.}{100+69 \, \% \, MC} \times 100 = 3.334 \, lbs$

Example of Kiln Operation: I

- · Sunrise:
 - Timer and thermostat turn on fans
- · After Sunset:
 - Close vents and shut off fans

Example of Kiln Operation II

- Sunrise:
 - Timer and thermostat turn on fans
- Early morning:
 - Measure MC, max-min temperatures, and humidity
- · Decide on conditions
- Late Morning / Early Afternoon:
 - Kiln heating up
- Mid Afternoon:
 - Check temperature and humidity
- After Sunset:
 - Close vents and shut off fans

Setting the Pitch and Instects

- Setting the Pitch
 - -180 F 12 hrs
- Insects
 - Center of wood 132°F for 30 min.

Thick Stock and Different Species

- · Thick stock requires a slower drying rate
 - Reduce the collector size
- · Easier to dry species can benefit from larger collector size
 - Less wood
 - Build with larger collector
- The Solar kiln has limits!
 - Use a different technology.......

SUSTAINABLE BIOMATERIALS

Direct-fired/Indirect-fired

- Examples:
 - Wood stove in building
 - Gas furnace heating
- Considerations:
 - Evenly heat building
 - Humidity control
 - Stress relief
 - Green or air-dried material
 - Can reach higher temperatures for sterilization and pitch setting

Kiln Direct

Dehumidification kilns

- Removes water from air rather than venting
- Greater energy efficiency over steam/hot water conventional kilns
- Small to large sizes

American Woodworker #94 June 200

Small D.H. Kiln Plans

- 600 Board foot kiln
- Year round operation
- Common building materials
- Common basement dehumidifier
- Electric heater
- Attic fans
- Total cost of materials \$2,704 (2006)

University of Wisconsin Cooperative Extension PUB FR-396 2007

http://www.dnr.state.wi.us/forestry/publications/pdf/FR-396-2007.pdf

