

T3-D2

13-D2				
Step	% Moisture	Dry-	Wet-	Depression
	Content	bulb	bulb	
1	Above 50	110	106	4
2	50 to 40	110	105	5
3	40 to 35	110	102	8
4	35 to 30	110	96	14
5	30 to 25	120	90	30
6	25 to 20	130	90	40
7	20 to 15	140	95	45
8	15 to Final	160	115	45
Equalize and Condition as necessary				

Equalization "By the book!"

- 1. Beg n when the drest sampe s 200 be ow the target mo sture content
- 2. Set wet bu b and dry bu b temperatures nk nto g ve an EMC in kiln that is 2% below target
- 3. Continue unt it the wettest sample reaches the target mo sture content

Why are we talking about Equalization Conditioning?

7

Conditioning: "By the book"

- Begin when the wettest sample reaches the target MC
- 2. Set the kiln to an EMC of 4% above target MC
 - Hardwoods
- 3. Dry bulb temperature the highest allowed in the schedule

8% target EMC = 12% Highest Temperature used 170 F

q

Continue conditioning until the stresses are relieved as shown by the stress test (prong test)

↑ WBT **→** % RH

temperature increased moisture = plasticization

Stress Relaxation

the loss in stress when it is held at a constant strain over a period of time

11

Interpreting Stresses

How many of you:

Cut stress test and read immediately? Cut stress test and let cool before interpreting?

Cut prong test and microwave 15-20 seconds?

Look for moisture content increase of 1-1.5%?

"The time of cutting the prongs, whether immediately following removal from the kiln or delayed for 1 week, had no substantial effect on prong response" -Fuller and Hart 1994

Factors Influencing Conditioning Time

4 hours or 2 days?

- Drying stress
- Density
- Thickness
- Properly equalized
- Temperature
- Relative humidity

17

Lumber Thickness

Thicker lumber =

- longer conditioning times
- •longer subsequent cooling times
 - to eliminate moisture gradients

19

Equalization

Properly equalized?

MC uniformity within charge = Better/Uniform Conditioning

Relative Humidity

Alone RH will not reduce case hardening!

- •Time to reach proper depression
 - Influences overall time!
- •Too low
 - Poor conditioning
- Too severe
 - Reverse case hardening

21

Why override?

- Enthalpy Change
 - Live steam injected into kin pressure drops to atmospheric pressure and steam temperature goes to 212.
- Sensible Heat
 - When live steam at 212 cools to the kiln temperature
- Heat of Condensation
 - When steam condenses on wood, vapor to liquid
- Heat of wetting
 - Chemical bonding of water molecules to molecules in wood

Hart, 1990

23

Avoiding Dry-bulb Over-ride 1

- •Turn off heating coils
- Raise the wet-bulb temperature to set point
- •The steam spray will raise the wet-bulb temperature and the heat in the steam will raise the dry-bulb
- Raise the dry-bulb temperature to set point and open one heating coil
- •Open additional coils only if needed to hold heat

Avoiding Dry-bulb Over-ride 2

- After equalizing, cool the kiln for several hours
 - Open the doors/vents
 - Leave fans on
- •Close kiln
- •Turn on steam spray to reach set-point
 - Leave dry-bulb off
 - Moisture will condense of surface more easily
- Watch closely to avoid stress-reversal

25

Avoiding Dry-bulb Over-ride 3

Use high pressure water vapor

